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The human organic anion and cation transporters are classified within two SLC superfamilies. Superfamily SLCO (formerly
SLC21A) consists of organic anion transporting polypeptides (OATPs), while the organic anion transporters (OATs) and the
organic cation transporters (OCTs) are classified in the SLC22A superfamily. Individual members of each superfamily are
expressed in essentially every epithelium throughout the body, where they play a significant role in drug absorption,
distribution and elimination. Substrates of OATPs are mainly large hydrophobic organic anions, while OATs transport smaller
and more hydrophilic organic anions and OCTs transport organic cations. In addition to endogenous substrates, such as
steroids, hormones and neurotransmitters, numerous drugs and other xenobiotics are transported by these proteins, including
statins, antivirals, antibiotics and anticancer drugs. Expression of OATPs, OATs and OCTs can be regulated at the protein or
transcriptional level and appears to vary within each family by both protein and tissue type. All three superfamilies consist of
12 transmembrane domain proteins that have intracellular termini. Although no crystal structures have yet been determined,
combinations of homology modelling and mutation experiments have been used to explore the mechanism of substrate
recognition and transport. Several polymorphisms identified in members of these superfamilies have been shown to affect
pharmacokinetics of their drug substrates, confirming the importance of these drug transporters for efficient pharmacological
therapy. This review, unlike other reviews that focus on a single transporter family, briefly summarizes the current knowledge
of all the functionally characterized human organic anion and cation drug uptake transporters of the SLCO and the SLC22A
superfamilies.

LINKED ARTICLES
BJP recently published a themed section on Transporters. To view the papers in this section visit http://dx.doi.org/10.1111/
bph.2011.164.issue-7

Abbreviations
ABC, ATP-binding cassette; BSP, bromosulphophthalein; CCK-8, cholecystokinin-octapeptide; CoMFA, comparative
molecular field analysis; HNF, hepatocyte nuclear factor; MPP, 1-methyl-4-phenylpyridinium; NSAID, non-steroidal
anti-inflammatory drug; OAT, organic anion transporter; OATP, organic anion transporting polypeptide; OCT, organic
cation transporter; OCTN, organic cation and carnitine transporter; PAH, p-aminohippurate; SHP, small heterodimer
partner; SLC, solute carrier; SNP, single nucleotide polymorphism; SXR, steroid and xenobiotic receptor; TEA,
tetraethylammonium; URAT, urate transporter

General introduction
Numerous endo- and xenobiotics including many drugs are
organic anions or cations. Their disposition and elimination

depend on the proper function of multispecific drug trans-
porters that belong to two major superfamilies: solute carrier
(SLC) transporters and ATP-binding cassette (ABC) transport-
ers. Although most are capable of bidirectional transport, in
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general, ABC transporters are considered to be responsible for
efflux of substrates, while SLC transporters mediate uptake of
substrates into cells. Within the SLC transporters, there are
two gene superfamilies that contain the major organic anion
and cation transporters. These are the SLCO superfamily,
made up of the organic anion transporting polypeptides
(OATPs), and the SLC22A superfamily, which contains the
organic cation transporters (OCTs) and the organic anion
transporters (OATs). Individual members of these superfami-
lies are expressed in essentially every epithelium throughout
the body. The members of both superfamilies mediate trans-
port of a broad range of structurally diverse compounds with
overlapping substrate specificities within the superfamilies.
In general, OCTs transport cations, OATPs transport large and
fairly hydrophobic organic anions, and OATs transport the
smaller and more hydrophilic organic anions. This brief
review will summarize our current knowledge about the
human members of these three transporter families, with an
emphasis on tissue distribution, substrate specificity, regula-
tion of expression, transporter structure and pathology.

Nomenclature

OATPs are encoded by genes in the SLCO/Slco superfamily.
This superfamily was originally named SLC21A; however, the
nomenclature of its members was updated and standardized
in 2004 based on phylogenetic relationships, and the super-
family was renamed to SLCO, the solute carrier family of the
OATPs (Hagenbuch and Meier, 2004). Eleven human OATPs
have been identified and are classified into six families based
on their amino acid identity. The different proteins are
named OATP (Oatp for the rodent proteins) followed by the
family number (e.g. OATP1, OATP2), the subfamily letter (e.g.
OATP1A, OATP1B) and then a consecutive number identify-
ing the individual members within the family based on the
historical order in which they have been identified (e.g.
Oatp1a1, OATP1A2 and Oatp1a3). The corresponding gene
symbols are SLCO followed by the same number–letter–
number combination (e.g. Slco1a1, SLCO1A2 and Slco1a3).
The best characterized OATPs belong to family 1, which in
humans contains OATP1A2, OATP1B1, OATP1B3 and
OATP1C1. A significant amount of gene duplication and
divergence has occurred in this family, especially in rodents,
complicating direct comparisons between human (OATP)
and rodent (Oatp) studies. OATP1A2 has five rodent ortho-
logues: Oatp1a1, Oatp1a3 (in rats only), Oatp1a4, Oatp1a5
and Oatp1a6. OATP1B1 and OATP1B3 have a single rodent
orthologue, Oatp1b2. The other OATPs and their rodent
orthologues are OATP1C1 (Oatp1c1), OATP2A1 (Oatp2a1),
OATP2B1 (Oatp2b1), OATP3A1 (Oatp3a1), OATP4A1
(Oatp4a1), OATP4C1 (Oatp4c1), OATP5A1 and OATP6A1
(Oatp6b1, Oatp6c1 and Oatp6d1).

The SLC22A family includes OCT1-3 (SLC22A1-3),
OCTN1 and OCTN2 (SLC22A4-5), OCT6 (SLC22A16, also
known as CT2), OAT1-4 (SLC22A6-8, 11), OAT7 (SLC22A9),
URAT1 (SLC22A12) and several additional not well character-
ized putative transporters. Most of these proteins have a
single rodent orthologue, but OAT4 is specific to humans.
OAT5 (SLC22A10) was cloned in 2001 but has not been func-
tionally characterized (Sun et al., 2001); thus, it is considered

an orphan OAT. It is believed that human OAT5 is not the
orthologue of rodent Oat5 (Youngblood and Sweet, 2004).
Additionally, in rodents, there is an Octn3 protein (Slc22a21)
– although no human homologue has been conclusively
identified, an antibody against mouse Octn3 cross-reacts in
certain human tissues, which led the authors to suggest that
a human OCTN3 does exist (Lamhonwah et al., 2005). The
human and rodent SLCO and SLC genes and their corre-
sponding proteins are listed in Table 1. Unless otherwise
stated, all information included in this review refers to the
human transporters.

OATPs

Organic anion transporting polypeptides (OATPs in humans,
Oatps in rodents) are multispecific transporters located in
numerous epithelia throughout the body. They mediate the
cellular uptake of a broad range of substrates, including bile
acids, steroid conjugates and numerous xenobiotics.

Tissue distribution
Protein expression for OATPs is summarized in Figure 1.
OATP1A2 is widely distributed throughout the body, with the
highest mRNA expression in the brain, liver, lung, kidney and
testes (Kullak-Ublick et al., 1995; Steckelbroeck et al., 2004).
With this distribution, it is thought that OATP1A2 could play
a critical role in the absorption, distribution and excretion of
xenobiotics. OATP1A2 protein has been localized to the brush
border membrane of enterocytes in the duodenum (Glaeser
et al., 2007), where it may mediate the absorption of xenobi-
otics. Within the liver, OATP1A2 is exclusively expressed in
cholangiocytes (Lee et al., 2005) and may be involved in the
reabsorption of xenobiotics excreted into the bile. In the
kidney, OATP1A2 is expressed at the apical membrane of the
distal nephron (Lee et al., 2005), where it could be responsible
for either the reabsorption from or the secretion of xenobiot-
ics into urine. OATP1A2 is also expressed at the luminal
membrane of the endothelial cells of brain capillaries
(Bronger et al., 2005) and is thought to be part of the blood–
brain barrier. OATP1B1 and OATP1B3 are both selectively
expressed in the liver (Abe et al., 1999; 2001; Hsiang et al.,
1999; Konig et al., 2000a,b), where they are localized to the
basolateral membrane of hepatocytes (Konig et al., 2000b; Abe
et al., 2001; Kullak-Ublick et al., 2001; Cui et al., 2003).
OATP1B1 is expressed in hepatocytes throughout the lobule,
while OATP1B3 is primarily expressed around the central vein
(Konig et al., 2000a); consistent with this pattern, expression
levels of OATP1B1 mRNA in liver homogenate are higher
overall than are levels of OATP1B3 (Michalski et al., 2002; Briz
et al., 2006). OATP1C1 mRNA expression was originally local-
ized to the brain and testes (Pizzagalli et al., 2002), and
OATP1C1 protein has been detected at the basolateral mem-
brane of choroid plexus epithelial cells (Roberts et al., 2008)
and to the Leydig cells of the testes (Pizzagalli et al., 2002).

OATP2A1, also known as the prostaglandin transporter
(PGT), is ubiquitously expressed throughout the body
(Nomura et al., 2004; 2005). As shown by Northern blot
analysis, mRNA of OATP2A1 was found in several tissues
including brain, colon, heart, kidney, liver, lung, ovary, pan-
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creas, placenta, prostate, skeletal muscle, spleen and small
intestine (Schuster, 2002). Recently, OATP2A1 protein expres-
sion was shown in the upper gastrointestinal tract, localized
in the pyloric glands of the antrum and parietal cells of the
gastric corpus (Mandery et al., 2010). OATP2A1 is thought to
be involved in terminating prostaglandin signalling by trans-
porting prostaglandins into cells (Nomura et al., 2004; 2005).
OATP2B1 is also widely expressed throughout the body

(Tamai et al., 2000; Kullak-Ublick et al., 2001). The highest
levels of mRNA are found in the liver, where the protein is
located at the basolateral membrane of hepatocytes (Kullak-
Ublick et al., 2001). Protein expression has also been reported
at the apical membrane of intestinal epithelial cells (Koba-
yashi et al., 2003), at the basolateral membrane of syncy-
tiotrophoblasts in the placenta (St-Pierre et al., 2002), in
epidermal keratinocytes (Schiffer et al., 2003), in the myoepi-

Table 1
Gene and protein names of human and rodent organic anion and cation transporters

Human gene Human protein Rodent gene Rodent protein

Slco1a1 Oatp1a1

SLCO1A2 OATP1A2

Slco1a3 (rat only) Oatp1a3

Slco1a4 Oatp1a4

Slco1a5 Oatp1a5

Slco1a6 Oatp1a6

SLCO1B1 OATP1B1

Slco1b2 Oatp1b2

SLCO1B3 OATP1B3

SLCO1C1 OATP1C1 Slco1c1 Oatp1c1

SLCO2A1 OATP2A1 Slco2a1 Oatp2a1

SLCO2B1 OATP2B1 Slco2b1 Oatp2b1

SLCO3A1 OATP3A1 Slco3a1 Oatp3a1

SLCO4A1 OATP4A1 Slco4a1 Oatp4a1

SLCO4C1 OATP4C1 Slco4c1 Oatp4c1

SLCO5A1 OATP5A1

SLCO6A1 OATP6A1

Slco6b1 Oatp6b1

Slco6c1 Oatp6c1

Slco6d1 Oatp6d1

SLC22A1 OCT1 Slc22a1 Oct1

SLC22A2 OCT2 Slc22a2 Oct2

SLC22A3 OCT3 Slc22a3 Oct3

SLC22A4 OCTN1 Slc22a4 Octn1

SLC22A5 OCTN2 Slc22a5 Octn2

SLC22A6 OAT1 Slc22a6 Oat1

SLC22A7 OAT2 Slc22a7 Oat2

SLC22A8 OAT3 Slc22a8 Oat3

SLC22A9 OAT7

SLC22A10 OAT5

SLC22A11 OAT4

SLC22A12 URAT1 Slc22a12 Urat1

SLC22A13 OAT10 Slc22a13 Oat10

SLC22A16 OCT6 (CT2)

Slc22a19 Oat5

SLC22A20 OAT6 Slc22a20 Oat6

Slc22a21 Octn3

BJP M Roth et al.

1262 British Journal of Pharmacology (2012) 165 1260–1287



thelium surrounding ductal epithelial cells in human
mammary gland (Pizzagalli et al., 2003), in vascular endothe-
lial cells in the heart (Grube et al., 2006b), in skeletal muscle
(Knauer et al., 2010) and at the luminal membrane of the
endothelial cells of the blood–brain barrier (Bronger et al.,
2005).

OATP3A1 mRNA levels are highest in testes, brain and
heart followed by lung, spleen, peripheral blood leukocytes
and thyroid gland (Adachi et al., 2003; Huber et al., 2007).
OATP3A1 mRNA expression has also been shown in human
epidermal keratinocytes (Schiffer et al., 2003). OATP3A1 has

two splice variants, which have cell type-specific expression.
OATP3A1_v1 was localized to the germ cells of testes, at the
basolateral membrane of the choroid plexus and in neuroglial
cells of the grey matter in the frontal cortex, while
OATP3A1_v2 was localized in the Sertoli cells of the testes, at
the apical and sub-apical membrane in choroid plexus and in
cell bodies and axons of the neurons in the frontal cortex
(Huber et al., 2007).

OATP4A1 has been detected in several tissues with the
highest levels of mRNA found in the heart and placenta,
followed by lung, liver, skeletal muscle, kidney and pancreas
(Tamai et al., 2000; Fujiwara et al., 2001). OATP4A1 protein
was localized to the apical membrane of syncytiotrophoblasts
in the placenta (Sato et al., 2003). OATP4C1 was initially
thought to be a kidney-specific OATP, based on Northern blot
analysis (Mikkaichi et al., 2004). Based on the localization of
rat Oatp4c1, it is assumed that human OATP4C1 is also local-
ized at the basolateral membrane of proximal tubule cells. A
recent microarray suggests that OATP4C1 may also be
expressed in the liver, although this has not yet been verified
by RT-PCR or protein analysis (Bleasby et al., 2006). This
microarray also contains the only determination of OATP5A1
expression to date, showing possible expression in fetal brain,
prostate, skeletal muscle and thymus. OATP6A1 mRNA has
been shown mainly in the testes, with low expression in
spleen, brain, fetal brain and placenta (Suzuki et al., 2003; Lee
et al., 2004).

Substrate specificity
The mechanism of OATP-mediated transport remains contro-
versial. It is well established that transport is ATP- and
sodium-independent, but the driving force for transport is
still under investigation. OATPs are capable of bidirectional
transport, and several studies have suggested that they work
as electroneutral exchangers. Evidence suggests that indi-
vidual OATPs/Oatps may exchange their substrates for intra-
cellular bicarbonate (Satlin et al., 1997; Leuthold et al., 2009),
glutathione (Li et al., 1998; Franco and Cidlowski, 2006) or
glutathione conjugates (Li et al., 2000). However, it appears
that there could be differences among the different OATPs/
Oatps with respect to the exact transport mechanism: for
example, transport mediated by OATP1B1 and OATP1B3 is
not affected by glutathione (Mahagita et al., 2007).

OATP-mediated transport can also be affected by pH.
Several studies have shown that OATP2B1 transport activity is
increased at acidic pH (Kobayashi et al., 2003; Nozawa et al.,
2004a; Sai et al., 2006; Varma et al., 2011). As OATP2B1 is
expressed in the small intestine, this phenomenon could
result in both increased transport of substrates and a broader
substrate range and thus improve OATP2B1-mediated drug
absorption. However, this effect seems to be substrate depen-
dent and can be caused by both increased affinity (decreased
Km) and increased turnover rate (Vmax) (Nozawa et al., 2004a;
Leuthold et al., 2009). It has been proposed that the mecha-
nism of increased substrate affinity is caused by the protona-
tion of a conserved histidine residue at the extracellular end
of transmembrane domain 3 (Leuthold et al., 2009). Trans-
port of estrone-3-sulphate by OATP1B1 and OATP1B3 has
previously been shown to be independent of the extracellular
pH and of the membrane potential (Mahagita et al., 2007).
However, a recent report demonstrates that these two trans-

Figure 1
Expression of OATPs in selected human epithelial cells. For more
details, see the text. OATP1A2 expression in cholangiocytes has been
demonstrated, but it has not yet been localized to a distinct cell
membrane. (A) apical; (B) basolateral.
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porters are influenced in different ways by both pH and the
membrane potential (Martinez-Becerra et al., 2011).

To determine the driving force of OATP-mediated trans-
port, additional studies are clearly needed. By using mem-
brane vesicles isolated from cells that overexpress individual
OATPs, the exact composition of the buffers on both sides of
the plasma membrane can be controlled. Based on such
experiments, an exact delineation of the involved driving
forces and exchange mechanisms should be possible.

Most OATPs transport a broad range of compounds. The
transported substrates are summarized for family OATP1 in
Table 2, for family OATP2 in Table 3 and for all the remaining
OATPs in Table 4 (no substrates have yet been identified for
OATP5A1 or OATP6A1). Although the majority of substrates
are anions, some OATPs can also transport neutral and cat-
ionic compounds (Bossuyt et al., 1996). In general, substrates
are amphipathic molecules with molecular weights greater
than 350 Daltons and include bile acids, conjugated steroids,
thyroid hormones, linear and cyclic peptides and mushroom
toxins as well as numerous drugs, including statins, sartans,
antibiotics and anticancer drugs. Many of these compounds
(e.g. estrone-3-sulphate, estradiol-17b-glucuronide or bromo-
sulphophthalein) are substrates of multiple OATPs and are
therefore commonly used as model substrates. However,
some substrates appear to be more specific; for example,
cholecystokinin-octapeptide (CCK-8) is selectively trans-
ported by OATP1B3 (Ismair et al., 2001), while digoxin seems
to be mainly transported by OATP4C1 (Mikkaichi et al.,
2004).

It has been suggested that substrates are transported
through a central positively charged pore in OATPs via a
rocker-switch mechanism (Meier-Abt et al., 2005). A pharma-
cophore model developed for OATP1B1 based on published
apparent Km values of OATP substrates suggests that sub-
strates contain two hydrogen bond acceptors, one hydrogen
bond donor and two hydrophobic regions (Chang et al.,
2005). A CoMFA (comparative molecular field analysis)
model calculated based on 25 competitive inhibitors sug-
gested that the substrate binding site for estradiol-17b-
glucuronide on OATP1B1 consists of a large hydrophobic
region with basic residues at both ends (Gui et al., 2009).
However, such analyses are complicated by the indication
that OATPs have multiple substrate binding sites or translo-
cation pathways. OATP1B1 has biphasic saturation kinetics
for estrone-3-sulphate, suggesting the presence of both a
high-affinity, low-capacity binding site and a low-affinity,
high-capacity binding site (Tamai et al., 2001; Noe et al.,
2007; Gui and Hagenbuch, 2009). Similarly, OATP4C1 was
recently shown to have distinct binding sites for estrone-3-
sulphate and digoxin (Yamaguchi et al., 2010). In addition,
inhibition studies have shown that compounds can have
stimulatory, inhibitory or no effect on OATP-mediated trans-
port, depending on the model substrate used (Gui et al., 2008;
Roth et al., 2011a,b).

Regulation of expression
Expression of OATPs is largely controlled by transcriptional
regulation. Constitutive OATP1B1 expression in hepatocytes
appears to be dependent on HNF1a (Jung and Kullak-Ublick,
2003; Furihata et al., 2007), while OATP1B3 is likely regulated

by HNF3b (Vavricka et al., 2004). There is also evidence that
additional signals may be involved in OATP1B expression,
including Stat5 (Wood et al., 2005) and transcription factors
activated by hepatocyte growth factor (Le Vee et al., 2009),
IFN-g (Le Vee et al., 2011) and IL-1b (Le Vee et al., 2008). The
mechanisms for regulating OATP expression are likely to
vary by tissue type. For example, OATP1A2 expression is
up-regulated in response to increased bile acid levels (Kullak-
Ublick et al., 1997a), which would affect expression levels in
the small intestine and liver. In breast carcinoma tissues and
cell lines, however, OATP1A2 expression is significantly asso-
ciated with the steroid and xenobiotic receptor (SXR) expres-
sion (Miki et al., 2006).

Regulation of OATPs can also occur at the protein level. As
most OATPs contain a PDZ consensus sequence (Wang et al.,
2005a), and the carboxy-terminus of OATP1A2 has been
shown to interact with PDZ proteins (Kato et al., 2004), mem-
brane localization of OATPs may be due to interactions with
PDZ proteins. A recent study with rat Oatp1a1 demonstrated
that in addition to the interaction with PDZ proteins, phos-
phorylation affected membrane expression (Choi et al.,
2011). It has also been shown that activation of PKC leads to
the phosphorylation of OATP2B1 and a reduced Vmax for
substrates, suggesting that the protein is internalized upon
phosphorylation (Kock et al., 2010).

Transporter structure
Human OATPs range in size from 643 to 724 amino acids,
with the exception of the as yet uncharacterized OATP5A1,
which contains 848 amino acids. OATPs are predicted to
contain 12 transmembrane domains, with both termini
located intracellularly. Although hydropathy models predict
either a 10- or 12-domain topology, the 12-transmembrane
domain model was confirmed for rat Oatp1a1 (Wang et al.,
2008). The second and fifth extracellular loops contain mul-
tiple predicted and/or confirmed N-glycosylation sites,
although the exact location varies by protein. The large fifth
extracellular loop contains many conserved cysteines, which
have been shown to be involved in disulphide bonds and are
important for the surface expression of OATP2B1 (Hanggi
et al., 2006). Similar to most other mammalian transport pro-
teins, there is no crystal structure available for any of the
OATPs so far. Therefore, homology modelling has been used
to construct putative three-dimensional models of OATPs;
this aids in the generation of theoretical predictions that can
then be tested experimentally (Meier-Abt et al., 2005; Gui and
Hagenbuch, 2008; Glaeser et al., 2010). Based on such
models, several conserved positively charged amino acids
that line the putative substrate pore were studied, and amino
acids R57, K361 and R580 in OATP1B1 (Weaver and Hagen-
buch, 2010) and K41, R580 and K361 in OATP1B3 (Glaeser
et al., 2010; Mandery et al., 2011) were shown to be impor-
tant for substrate transport. These amino acids are high-
lighted in the predicted three-dimensional structure of
OATP1B1 shown in Figure 2A. Additional experiments using
chimeras between OATP1B1 and OATP1B3 identified trans-
membrane domains 8 and 9 for OATP1B1 (Miyagawa et al.,
2009) and transmembrane domain 10 for both OATP1B1 (Gui
and Hagenbuch, 2009) and OATP1B3 (Gui and Hagenbuch,
2008) to be important for substrate transport and expression.
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Table 2
Substrates of human OATP1 family

Substrates Km (mM) References

OATP1A2

Acebutolol Kato et al. (2009)

APD-ajmalinium Bossuyt et al. (1996); van Montfoort et al. (1999)

Atenolol Kato et al. (2009)

Atrasentan Katz et al. (2006)

Bamet-R2 24 Briz et al. (2002)

Bamet-UD2 14 Briz et al. (2002)

Bilirubin Briz et al. (2003)

BQ-123 Kullak-Ublick et al. (2001)

Bromosulphophthalein 20 Kullak-Ublick et al. (1995)

Celiprolol 20.5 Kato et al. (2009)

Chlorambucil-taurocholate Kullak-Ublick et al. (1997b)

Cholate 93 Kullak-Ublick et al. (1995); Meier et al. (1997)

Ciprofloxacin Maeda et al. (2007)

CRC220 Meier et al. (1997)

Darunavir Hartkoorn et al. (2010)

Dehydroepiandrosterone-3-sulphate 7 Kullak-Ublick et al. (1998)

Deltorphin II 330 Gao et al. (2000)

[D-penicillamine2,5]enkephalin 202 Gao et al. (2000)

Enoxacin Maeda et al. (2007)

Epicatechin gallate 10 Roth et al. (2011b)

Epigallocatechin gallate 19 Roth et al. (2011b)

Erythromycin Franke et al. (2008)

Estradiol-17b-glucuronide Meier et al. (1997); Kullak-Ublick et al. (2001); Briz et al. (2003)

Estrone-3-sulphate 16 Lee et al. (2005)

Fexofenadine 6 Cvetkovic et al. (1999)

Gatifloxacin Maeda et al. (2007)

Gd-B20790 Pascolo et al. (1999)

Glycocholate Kullak-Ublick et al. (1995; 2001); Meier et al. (1997)

Hydroxyurea Walker et al. (2011)

Imatinib Hu et al. (2008)

Labetalol Kato et al. (2009)

Levofloxacin 136 Maeda et al. (2007)

Lomefloxacin Maeda et al. (2007)

Lopinavir Hartkoorn et al. (2010)

Methotrexate 457 Badagnani et al. (2006)

Microcystin 20 Fischer et al. (2005)

N-methylquinidine 26 van Montfoort et al. (1999)

N-methylquinine 5 van Montfoort et al. (1999); Kullak-Ublick et al. (2001)

Nadolol Kato et al. (2009)

Norfloxacin Maeda et al. (2007)

Ouabain 5 500 Bossuyt et al. (1996)

Pitavastatin 3 Fujino et al. (2005)

PGE2 Kullak-Ublick et al. (2001)

Reverse triiodothyronine (rT3) Fujiwara et al. (2001)

Rocuronium van Montfoort et al. (1999)
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Table 2
Continued

Substrates Km (mM) References

Rosuvastatin 3 Ho et al. (2006)

Saquinavir 36 Su et al. (2004)

Sotalol Kato et al. (2009)

Talinolol 714 Shirasaka et al. (2010)

Taurocholate 60 Kullak-Ublick et al. (1995)

Taurochenodeoxycholate Kullak-Ublick et al. (1995)

Tauroursodeoxycholate 19 Kullak-Ublick et al. (1995)

Thyroxine (T4) 8 Fujiwara et al. (2001)

Tebipenem pivoxil 41 Kato et al. (2010)

TR-14035 Tsuda-Tsukimoto et al. (2006)

Triiodothyronine (T3) 7 Fujiwara et al. (2001)

Unoprostone metabolite 93 Gao et al. (2005)

OATP1B1

ACU154 Takada et al. (2004)

Arsenic (arsenite, arsenate) Lu et al. (2006)

Atorvastatin 10 Lau et al. (2007)

Atrasentan Katz et al. (2006)

Bamet-R2 10 Briz et al. (2002)

Bamet-UD2 10 Briz et al. (2002)

Benzylpenicillin Tamai et al. (2000)

BDE47 0.31 Pacyniak et al. (2010)

BDE99 0.91 Pacyniak et al. (2010)

BDE153 1.91 Pacyniak et al. (2010)

Bilirubin 0.01 Briz et al. (2003)

Bisglucuronosyl bilirubin 0.3 Cui et al. (2001)

BNP1350 Oostendorp et al. (2009)

Bosentan 44 Treiber et al. (2007)

BQ-123 Kullak-Ublick et al. (2001)

Bromosulphophthalein 0.1–0.3 Cui et al. (2001); Kullak-Ublick et al. (2001)

Caspofungin Sandhu et al. (2005)

Cefazolin 20 800 Nakakariya et al. (2008)

Cefditoren 3 450 Nakakariya et al. (2008)

Cefoperazone 4 840 Nakakariya et al. (2008)

Cerivastatin 4 Shitara et al. (2003)

CDCA-NBD 1.5 Yamaguchi et al. (2006)

Cholate 11 Cui et al. (2001)

Cholyl-glycylamido-fluorescein (CGamF) 7.9 Annaert et al. (2010)

[D-Ala2, D-Leu5]enkephalin Nozawa et al. (2003)

Darunavir Hartkoorn et al. (2010)

Dehydroepiandrosterone-3-sulphate 22 Abe et al. (1999; 2001); Hsiang et al. (1999); Cui et al. (2001);
Kullak-Ublick et al. (2001)

Demethylphalloin 17 Meier-Abt et al. (2004)

[D-penicillamine2,5]enkephalin Abe et al. (2001)

Eltrombopag Takeuchi et al. (2011)

Enalapril 262 Liu et al. (2006)
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Table 2
Continued

Substrates Km (mM) References

Estradiol-17b-glucuronide 4–24 Abe et al. (1999); Tamai et al. (2000; 2001); Konig et al. (2000b);
Cui et al. (2001); Kullak-Ublick et al. (2001); Nakai et al. (2001);
Hirano et al. (2004)

Estrone-3-sulphate 0.5
12.5

Hirano et al. (2004)
Cui et al. (2001)

0.09 and 5.4 Tamai et al. (2001)

0.23 and 45 Noe et al. (2007)

Ezetimibe glucuronide Oswald et al. (2008)

Fluorescein Gui et al. (2010)

Fluorescein methotrexate 3.8 Gui et al. (2010)

Fluvastatin 1.4–3.5 Kopplow et al. (2005); Noe et al. (2007)

Gimatecan Oostendorp et al. (2009)

Glycocholate Kullak-Ublick et al. (2001)

Glycoursodeoxycholate Maeda et al. (2006b)

Hydroxyurea Walker et al. (2011)

Leukotriene C4 Abe et al. (1999)

Leukotriene E4 Abe et al. (1999)

Lopinavir Hartkoorn et al. (2010)

Mesalazine 55 Konig (2011)

Methotrexate Abe et al. (2001)

Microcystein 7 Fischer et al. (2005)

Monoglyucuronosyl bilirubin 0.1 Cui et al. (2001)

Mycophenolic acid-7-O-glucuronide Picard et al. (2010)

Nafcillin 1 110 Nakakariya et al. (2008)

Olmesartan 13–43 Nakagomi-Hagihara et al. (2006); Yamada et al. (2007)

Phalloidin 17–39 Fehrenbach et al. (2003); Meier-Abt et al. (2004)

Pitavastatin 3–4 Hirano et al. (2004); Fujino et al. (2005)

Pravastatin 14–34 Hsiang et al. (1999); Nakai et al. (2001); Sasaki et al. (2002)

PG E2 Abe et al. (1999); Tamai et al. (2000); Kullak-Ublick et al. (2001)

Rifampicin 2–13 Vavricka et al. (2002); Tirona et al. (2003)

Ro 48-5033 60 Treiber et al. (2007)

Rosuvastatin 9 Ho et al. (2006)

S-8921G 1.93 Sakamoto et al. (2008)

Saquinavir Hartkoorn et al. (2010)

Simvastatin acid Pasanen et al. (2006)

SN-38 Nozawa et al. (2005)

Taurocholate 10–34 Abe et al. (1999; 2001); Hsiang et al. (1999); Cui et al. (2001);
Kullak-Ublick et al. (2001)

Tauroursodeoxycholate 7.5 Maeda et al. (2006b)

Temocapril Maeda et al. (2006a)

Thromboxane B2 Abe et al. (1999)

Thyroxine (T4) 3 Abe et al. (1999)

Torasemide 6.2 Vormfelde et al. (2008); Werner et al. (2008)

TR-14035 7.5 Tsuda-Tsukimoto et al. (2006)

Triiodothyronine (T3) 3 Abe et al. (1999)

Troglitazone sulphate Nozawa et al. (2004b)

Valsartan 1.4 Yamashiro et al. (2006)
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Table 2
Continued

Substrates Km (mM) References

OATP1B3

Amanitin 4 Letschert et al. (2006)

Atrasentan Katz et al. (2006)

Benzylpenicillin (Penicillin G) Letschert et al. (2006)

BDE47 0.41 Pacyniak et al. (2010)

BDE99 0.70 Pacyniak et al. (2010)

BDE153 1.66 Pacyniak et al. (2010)

Bilirubin 0.04 Briz et al. (2003)

Bosentan 141 Treiber et al. (2007)

BQ-123 Kullak-Ublick et al. (2001)

Bromosulphophthalein 0.4–6 Kullak-Ublick et al. (2001)

Cefadroxil 4150 Nakakariya et al. (2008)

Cefazolin 3890 Nakakariya et al. (2008)

Cefditoren 5870 Nakakariya et al. (2008)

Cefmetazole 706 Nakakariya et al. (2008)

Cefoperazone 1950 Nakakariya et al. (2008)

Cephalexin 1190 Nakakariya et al. (2008)

CDCA-NBD 0.5 Yamaguchi et al. (2006)

Cholate 42 Briz et al. (2006)

Cholecystokinin octapeptide (CCK-8) 4–11 Ismair et al. (2001); Hirano et al. (2004)

Cholyl-glycylamido-fluorescein (CGamF) 2.2 Annaert et al. (2010)

Dehydroepiandrosterone-3-sulphate Konig et al. (2000a); Cui et al. (2001); Kullak-Ublick et al. (2001)

Deltorphin II Kullak-Ublick et al. (2001)

Demethylphalloin 8 Meier-Abt et al. (2004)

Diclofenac Kindla et al. (2011)

Digoxin Kullak-Ublick et al. (2001)

Docetaxel Smith et al. (2005)

[D-penicillamine2,5]enkephalin Kullak-Ublick et al. (2001)

Enalapril Liu et al. (2006)

Epicatechin gallate 34 Roth et al. (2011b)

Epigallocatechin gallate 13 Roth et al. (2011b)

Erythromycin Franke et al. (2008)

Estradiol-17b-glucuronide 5–25 Konig et al. (2000a); Cui et al. (2001); Hirano et al. (2004)

Estrone-3-sulphate Kullak-Ublick et al. (2001); Nozawa et al. (2004b);
Nozawa et al. (2005)

Fexofenadine 108 Shimizu et al. (2005)

Fluorescein Gui et al. (2010)

Fluorescein methotrexate 7.9 Gui et al. (2010)

Fluo-3, pentoammonium salt 6.8 Baldes et al. (2006)

Flutax-2 Gui et al. (2010)

Fluvastatin 7 Kopplow et al. (2005)

Glutathione 4500 Briz et al. (2006)

Glycocholate 43 Kullak-Ublick et al. (2001); Briz et al. (2006)

Glycoursodeoxycholate 24.7 Maeda et al. (2006b)

Hydroxyurea Walker et al. (2011)
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Table 2
Continued

Substrates Km (mM) References

Imatinib Hu et al. (2008)

Leukotriene C4 Konig et al. (2000a); Kullak-Ublick et al. (2001)

Mesalazine 77 Konig (2011)

Methotrexate 25–39 Abe et al. (2001)

Microcystin 1.2–9 Fischer et al. (2005); Komatsu et al. (2007)

Monoglyucuronosyl bilirubin 0.5 Cui et al. (2001)

Mycophenolic acid-7-O-glucuronide 114 Picard et al. (2010)

Nafcillin 73 Nakakariya et al. (2008)

Olmesartan 44–72 Nakagomi-Hagihara et al. (2006); Yamada et al. (2007)

Ouabain Kullak-Ublick et al. (2001)

Paclitaxel 7 Smith et al. (2005)

Phalloidin 8 Meier-Abt et al. (2004)

Pitavastatin 3–4 Hirano et al. (2004); Fujino et al. (2005)

Rifampicin 2 Vavricka et al. (2002); Tirona et al. (2003)

Ro 48–5033 166 Treiber et al. (2007)

Rosuvastatin 10 Ho et al. (2007)

S-8921G 1.88 Sakamoto et al. (2008)

Saquinavir Hartkoorn et al. (2010)

Taurocholate 6–112 Abe et al. (2001); Kullak-Ublick et al. (2001); Letschert et al. (2004);
Briz et al. (2006)

Taurochenodeoxycholate Briz et al. (2006)

Taurodeoxycholate Briz et al. (2006)

Tauroursodeoxycholate 16 Maeda et al. (2006b)

Telmisartan 1 Ishiguro et al. (2006)

Thyroxine (T4) Kullak-Ublick et al. (2001)

TR-14035 5.3 Tsuda-Tsukimoto et al. (2006)

Triiodothyronine (T3) 6 Abe et al. (2001); Kullak-Ublick et al. (2001)

Valsartan 18 Yamashiro et al. (2006)

OATP1C1

Bromosulphophthalein Pizzagalli et al. (2002)

Estradiol-17b-glucuronide Pizzagalli et al. (2002)

Estrone-3-sulphate Pizzagalli et al. (2002)

Thyroxine (T4) 0.09 Pizzagalli et al. (2002)

Triiodothyronine (T3) Pizzagalli et al. (2002)

Reverse triiodothyronine (rT3) 0.128 Pizzagalli et al. (2002)

Thyroxine sulphate (T4S) van der Deure et al. (2008)

If available, apparent affinity (Km) values are listed. This table is an updated and extended version of a similar table published in Hagenbuch
and Gui (2008).
ACU154: metabolite of PKI166, an epidermal growth factor receptor kinase inhibitor; Bamet-R2: cis-diammine-chloro-cholylglycinate-
platinum(II); Bamet-UD2: cis-diammine-bisursodeoxycholate-platinum(II); BDE47: 2,2′,4,4′-Tetrabromodiphenyl ether; BDE99: 2,2′,4,4′,5-
pentabromodiphenyl ether; BDE153: 2,2′,4,4′,5,5′-hexabromodiphenyl ether; BQ-123: cyclic pentapeptide endothelin receptor antagonist;
CDCA-NBD: chenodeoxycholyl-(Ne-NBD)-lysine; CRC220: peptidomimetic thrombin inhibitor; Flutax-2: paclitaxel, Oregon Green® 488
conjugate; Gd-B20790: gadolonium-18-((3-(2-carboxylbutyl)-2,4,6-triiodophenyl)amino)-3,6,9-tris(carboxymethyl)-11,18-dioxo-3,6,9,12-
tetrazaoctadecanoic acid; Ro 48–5033: Bosentan metabolite; SN-38: 7-ethyl-10-hydroxycamptothecin (active metabolite of irinotecan);
S-8921G: methyl 1-(3,4-dimethoxyphenyl)-(3-ethylvaleryl)-4-hydroxy-6,7,8-trimethoxy-2-naphthoate glucuronide (inhibitor of the ilial apical
sodium-dependent bile acid transporter); TR-14035: a4b1/a4b7 integrin dual antagonist.
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Table 3
Substrates of human OATP2 family

Substrates Km (mM) References

OATP2A1

Latanoprost acid 5.4 Kraft et al. (2010)

PGH2 0.4 Chi and Schuster (2010)

PGE1 0.07 Kanai et al. (1995)

PGE2 0.09 Kanai et al. (1995)

PGF2a 0.1 Kanai et al. (1995)

Thromboxane B2 0.4 Kanai et al. (1995)

OATP2B1

Aliskiren 72 Vaidyanathan et al. (2008)

Atorvastatin 0.2 Grube et al. (2006b)

Benzylpenicillin Tamai et al. (2000)

BDE47 0.81 Pacyniak et al. (2010)

BDE99 0.87 Pacyniak et al. (2010)

BDE153 0.65 Pacyniak et al. (2010)

Bosentan 202 Treiber et al. (2007)

Bromosulphophthalein 0.7 Kullak-Ublick et al. (2001)

CP-671,305 4 Kalgutkar et al. (2007)

Dehydroepiandrosterone-3-sulphate 9 Pizzagalli et al. (2003)

Eltrombopag Takeuchi et al. (2011)

Estrone-3-sulphate 5–21 Tamai et al. (2001); Pizzagalli et al. (2003); Nozawa et al. (2004a);
Hirano et al. (2006); Grube et al. (2006a)

Ezetimibe glucuronide Oswald et al. (2008)

Fexofenadine Nozawa et al. (2004a)

Fluvastatin 0.7 Kopplow et al. (2005); Noe et al. (2007)

Glibenclamide 6 Satoh et al. (2005)

Latanoprost acid Kraft et al. (2010)

M17055 4.5 Nishimura et al. (2007)

Mesalazine 189 Konig (2011)

Montelukast Mougey et al. (2009)

Pravastatin 2 Nozawa et al. (2004a)

Pitavastatin 1.2 Hirano et al. (2006)

Pregnenolone sulphate Grube et al. (2006a)

PGE2 Tamai et al. (2000)

Rosuvastatin 2 Ho et al. (2006)

Talinolol 629 Shirasaka et al. (2010)

Taurocholate 72 Kobayashi et al. (2003)

Tebipenem pivoxil Kato et al. (2010)

Thyroxine (T4) 0.77 Leuthold et al. (2009)

Unoprostone metabolite 91 Gao et al. (2005)

If available, apparent affinity (Km) values are listed. This table is an updated and extended version of a similar table published in Hagenbuch
and Gui (2008).
BDE47: 2,2′,4,4′-Tetrabromodiphenyl ether; BDE99: 2,2′,4,4′,5-pentabromodiphenyl ether; BDE153: 2,2′,4,4′,5,5′-hexabromodiphenyl
ether; CP-671,305: (+)-2-[4-((2-(benzol[1,3]dioxol-5-yloxy)-pyridine-3-carbonyl]-amino)-methyl)-3-fluoro-phenoxy]-propionic acid;
M17055: 7-chloro-2,3-dihydro-1-(2-methylbenzoyl)-4(1H)-quinolinone 4-oxime-O-sulphonic acid.
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However, to identify the individual amino acids that are
involved in substrate translocation, additional experiments
such as cysteine scanning mutagenesis and eventually crys-
tallography or NMR studies are needed. Because there is evi-
dence that different substrates are handled slightly differently
by at least OATP1B1 and OATP1B3 (Gui et al., 2008; Roth
et al., 2011a,b), such experiments will have to be performed
for multiple model substrates.

Pathology and clinical significance
There are only a few links between disease states and altered
function of OATPs; however, there have been many studies
showing associations between altered OATP expression levels
and disease states, and documenting effects of different alleles
and single-nucleotide polymorphisms (SNPs) in OATPs on
drug disposition.

Table 4
Substrates of human OATP families 3–6

Substrates Km (mM) References

OATP3A1_v1

Benzylpenicillin Tamai et al. (2000)

BQ-123 Huber et al. (2007)

Deltorphin Huber et al. (2007)

Estrone-3-sulphate Tamai et al. (2000)

PGE1 0.05–0.1 Adachi et al. (2003); Huber et al. (2007)

PGE2 0.06–0.2 Tamai et al. (2000); Adachi et al. (2003); Huber et al. (2007)

PGF2a Adachi et al. (2003)

Thyroxine (T4) Huber et al. (2007)

Vasopressin Huber et al. (2007)

OATP3A1_v2

Arachidonic acid Huber et al. (2007)

BQ-123 Huber et al. (2007)

PGE1 0.2 Huber et al. (2007)

PGE2 0.4 Huber et al. (2007)

Thyroxine (T4) Huber et al. (2007)

Vasopressin Huber et al. (2007)

OATP4A1

Benzylpenicillin Tamai et al. (2000)

Estradiol-17b-glucuronide Tamai et al. (2000)

Estrone-3-sulphate Tamai et al. (2000)

Thyroxine (T4) Fujiwara et al. (2001)

PGE2 Tamai et al. (2000)

Triiodothyronine (T3) 1 Fujiwara et al. (2001)

Reverse triiodothyronine (rT3) Fujiwara et al. (2001)

Taurocholate 15 Fujiwara et al. (2001)

Unoprostone metabolite Gao et al. (2005)

OATP4C1

cAMP Mikkaichi et al. (2004)

Digoxin 8 Mikkaichi et al. (2004)

Estrone-3-sulphate 27 Yamaguchi et al. (2010)

Methotrexate Mikkaichi et al. (2004)

Ouabain 0.4 Mikkaichi et al. (2004)

Sitagliptin Chu et al. (2007)

Thyroxine (T4) Mikkaichi et al. (2004)

Triiodothyronine (T3) 6 Mikkaichi et al. (2004)

If available, apparent affinity (Km) values are listed.
BQ-123: cyclic pentapeptide endothelin receptor antagonist.
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Neonates with the OATP1B1 polymorphism N130D
(found in OATP1B1*1b and *15) are at a higher risk for devel-
oping severe hyperbilirubinaemia (Huang et al., 2004; Buyuk-
kale et al., 2011). Adults with the OATP1b1*15 haplotypes
also have higher serum bilirubin levels (Ieiri et al., 2004),
though there is no associated pathology. However, OATP
expression is often altered in disease states. Cholestasis results
in decreased mRNA levels of OATP1A2, OATP1B1 and
OATP1B3 in whole livers (Keitel et al., 2005; Chen et al., 2008;
Congiu et al., 2009). Placental expression of OATP1A2 mRNA
is increased in patients with intrahepatic cholestatis of preg-

nancy (Cui et al., 2009). OATP1B1 is also reduced in patients
with severe versus mild viral hepatitis (Oswald et al., 2001).
Inflammatory bowel disease is associated with higher
OATP2B1 and OATP4A1 levels in ileum and colon (Wojtal
et al., 2009), and OATP4A1 is also up-regulated in polycystic
ovarian syndrome (Plaza et al., 2010).

Of particular interest are several SNPs in OATP1B1, which
have demonstrated the importance of this transporter in the
disposition of certain drugs. The N130D allele, found in both
OATP1B1*1b and *15, is associated with altered pharmacoki-
netics of pravastatin and pitavastatin (Nishizato et al., 2003;

Figure 2
Homology models of members of the SLCO (OATP1B1) and the SCL22A (OAT1) families. The models were generated using Phyre2 (Kelley and
Sternberg, 2009) and are based on the E. coli glycerol-3-phosphate transporter. (A) OATP1B1 is shown viewed from the extracellular side (left) and
from within the lipid bilayer (right). For clarity, transmembrane domains 2 and 4 are omitted in the right panel. Amino acids mentioned in the
text are indicated. (B) OAT1 is shown viewed from the extracellular side (left) and from within the lipid bilayer (right). For clarity, transmembrane
domains 2 and 4 are omitted in the right panel. The indicated amino acids were identified as important for the function of OAT1 and face the
putative aqueous pore (Hong et al., 2004; Perry et al., 2006; Rizwan et al., 2007).
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Mwinyi et al., 2004; Niemi et al., 2004; Chung et al., 2005;
Wen and Xiong, 2010). The V174A allele, which is found in
both OATP1B1*5 and OATP1B1*15, is associated with an
attenuated cholesterol lowering effect of multiple statins
(Tachibana-Iimori et al., 2004) as well as with an increased
systemic exposure of the anti-diabetic nateglinide (Zhang
et al., 2006) and the HIV protease inhibitor lopinavir (Hartk-
oorn et al., 2010). However, the V174 allele is unrelated to the
pharmacokinetics of rosiglitazone and pioglitazone (Kallioko-
ski et al., 2008), torasemide (Werner et al., 2008), mycophe-
nolic acid (Miura et al., 2007) or telmisartan (Miura et al.,
2009). Polymorphisms in other OATPs, while less studied, can
also affect drug pharmacokinetics. It has recently been shown
that OATP1A2 polymorphisms are associated with imatinib
clearance (Yamakawa et al., 2011), and polymorphisms in
OATP2B1 are associated with the pharmacokinetics of fex-
ofenadine (Akamine et al., 2010). Functional OATP polymor-
phisms are reviewed in detail by Kalliokoski and Niemi (2009)
and Konig (2011).

Many cancer tissues and cell lines have altered expression
of OATPs. For example, the normally liver-exclusive
OATP1B3 is also expressed in gastric, colon and pancreatic
cancers (Abe et al., 2001; Lee et al., 2008), as well as cancers of
the lung (Monks et al., 2007), breast (Muto et al., 2007) and
prostate (Hamada et al., 2008), whereas it has a reduced
expression in hepatocellular carcinomas (Kinoshita and
Miyata, 2002; Cui et al., 2003; Vavricka et al., 2004). Similarly,
most of the other OATPs have been shown to have altered
expression in different types of cancers. Because OATPs are
known to transport hormones and their conjugates, which
are thought to play a role in the enhanced proliferation or
chemo-resistance of some cancers, the overexpression of
OATPs may provide a survival benefit to these cells. The role
of OATPs in cancer is discussed further in the reviews by
Obaidat et al. (2012) and Wlcek et al. (2011).

One of the primary pathologies caused by OATPs is likely
to be adverse drug–drug or drug–food interactions. Treatment
with cyclosporine, an inhibitor of OATP-mediated transport,
is associated with increased plasma concentrations of statins
(Neuvonen et al., 2006). Cyclosporine also increases the
plasma concentration of bosentan, as does rifampicin, both of
which inhibit OATP-mediated bosentan uptake at clinically
relevant concentrations (Treiber et al., 2007; van Giersbergen
et al., 2007). Both rifamycin SV and rifampicin reduce bromo-
sulphophthalein (BSP) elimination in humans and inhibit in
vitro uptake of BSP by OATP1A2, OATP1B1, OATP1B3 and
OATP2B1 (Vavricka et al., 2002). Macrolide antibiotics also
inhibit uptake of BSP and pravastatin by OATP1B1 and
OATP1B3 in vitro (Seithel et al., 2007). In addition, cyclospo-
rine, saquinavir, indinavir and rifamycin SV inhibit uptake of
estradiol-17b-glucuronide by OATP1B1 with potencies that
correlate with the incidence of hyperbilirubinaemia associ-
ated with those four drugs (Campbell et al., 2004).

There are also reports on potential drug–food interactions
occurring at OATPs, particularly for OATP1A2 and OATP2B1,
which are expressed at the luminal membrane of enterocytes.
Fruit juices decrease the oral bioavailability of fexofenadine
in humans (Dresser et al., 2002; 2005; Glaeser et al., 2007). It
has been shown that fexofenadine is a substrate of OATP1A2,
and that uptake of fexofenadine by OATP1A2 is inhibited
by naringin, a component of grapefruit (Bailey et al., 2007).

In addition, many flavonoids affect OATP-mediated uptake
of the model substrates estrone-3-sulphate, estradiol-
17b-glucuronide and dehydroepiandrosterone-3-sulphate
(DHEAS), suggesting that possible drug–food interactions
could occur especially in patients taking ‘healthy’ dietary
supplements in addition to their prescribed medications
(Wang et al., 2005b; Roth et al., 2011b).

OATs

Organic anion transporters (OATs in humans, Oats in
rodents) are another family of multispecific transporters and
are encoded by the SLC22/Slc22 gene superfamily. They
mediate the transport of a diverse range of low molecular
weight substrates including steroid hormone conjugates, bio-
genic amines, various drugs and toxins.

Tissue distribution
Documented protein expression for OATs is summarized in
Figure 3. Organic anion transporters are expressed in mem-
branes of different tissues throughout the body. OAT1 was the
first identified human OAT (Reid et al., 1998), with mRNA
expression at highest levels in the kidney, followed by skeletal
muscle, brain and placenta (Hosoyamada et al., 1999). At the
protein level, OAT1 is expressed at the basolateral membrane
of proximal tubules (Hosoyamada et al., 1999; Motohashi
et al., 2002; Ljubojevic et al., 2007) and in the plasma mem-
brane of skeletal muscle cells (Takeda et al., 2004). Membrane
localization of human OAT1 in the choroid plexus has not
yet been investigated, but Oat1 expression has been localized
to the apical membrane of mouse and rat choroid plexus
(Pritchard et al., 1999; Alebouyeh et al., 2003; Sykes et al.,
2004). OAT2 mRNA has the highest expression levels in the
liver with lower levels also seen in kidney (Sekine et al., 1998;
Sun et al., 2001; Hilgendorf et al., 2007). Protein expression of
OAT2 has been identified at the basolateral membrane of
proximal tubules (Enomoto et al., 2002b), and it is assumed
to be expressed at the basolateral membrane of human hepa-
tocytes based on findings in rodents. OAT3 mRNA has
highest expression levels in the kidney with lower levels in
brain (Cha et al., 2001; Hilgendorf et al., 2007). OAT3 mRNA
expression has also been shown in adrenal tissue and the
human adrenal cell line NCI-H295R, and functional studies
suggest the protein is expressed (Asif et al., 2005). OAT3
protein has been localized to the basolateral membrane of
proximal tubules in the kidney (Cha et al., 2001). OAT4
mRNA is expressed in kidney and placenta (Cha et al., 2000;
Bleasby et al., 2006), with protein identified at the apical
membrane of renal proximal tubules (Babu et al., 2002; Ekara-
tanawong et al., 2004) and at the basolateral membrane of
syncytiotrophoblasts in the placenta (Ugele et al., 2003).
Similarly to OAT3, OAT4 mRNA expression and function has
also been shown in adrenal tissue and the human adrenal cell
line NCI-H295R (Asif et al., 2005). Little is known about
human OAT5, although Northern blot analysis demonstrates
mRNA expression in the liver (Sun et al., 2001). The recently
characterized OAT7 has been shown to be exclusively
expressed in adult and fetal liver, where its expression has
been localized to the basolateral membrane of hepatocytes
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(Shin et al., 2007). OAT10 mRNA has been shown to have
highest expression levels in the kidney followed by brain,
heart, small intestine and colon (Nishiwaki et al., 1998; Bahn
et al., 2008). URAT1, which was previously named the renal-
specific transporter ‘RST’, has mRNA expression in both adult
and fetal kidney (Enomoto et al., 2002a); more recently,
mRNA was also identified in vascular smooth muscle cells
(Price et al., 2006). Using immunohistochemistry, URAT1
protein has been localized to the apical membrane of renal
proximal tubules (Enomoto et al., 2002a).

Substrate specificity
The first cloning of human OAT1 was reported in 1998 (Reid
et al., 1998). Additional reports in 1999 described the initial
functional characterization of human OAT1 as a multispecific
organic anion-dicarboxylate exchanger (Cihlar et al., 1999;
Hosoyamada et al., 1999; Lu et al., 1999; Race et al., 1999).
The best characterized OATs, OAT1 and OAT3, have been

shown to transport organic anions against a negative mem-
brane potential in exchange for the counter ion
a-ketoglutarate. The a-ketoglutarate gradient is maintained
by the secondary active sodium-dicarboxylate co-transporter,
which utilizes the sodium gradient maintained by the
primary active Na+/K+ ATPase (see Figure 4). Therefore, trans-
port of these OATs has been termed ‘tertiary active.’ Unlike
OAT1 and OAT3, human OAT7 exhibits a unique exchange
mechanism using short chain fatty acids such as butyrate as
counter ions for the transport of sulphate conjugates (Shin
et al., 2007). OAT1 is primarily known for its high affinity
transport of p-aminohippurate (PAH) from renal tubule cells
with apparent affinity (Km) values reported in the low micro-
molar range (Hosoyamada et al., 1999). OAT3 can also trans-
port PAH but with slightly lower affinity than OAT1 (Cha
et al., 2001). Aside from PAH, OAT1 has been shown to trans-
port prostaglandins, a-ketoglutarate, NSAIDs, antivirals and
anticancer drugs. The uricosuric drug, probenecid, is a potent
inhibitor of OAT1 transport (Sweet et al., 1997; Cihlar et al.,
1999; Hosoyamada et al., 1999; Lu et al., 1999; Race et al.,
1999). A more comprehensive review of all OAT substrates
and inhibitors can be found in tables of recently published
reviews by VanWert et al. (2010) and Burckhardt and Burck-
hardt (2011).

Regulation of expression
Transcriptional regulation of OATs has been studied by
several groups and multiple transcription factors have been
implicated. HNF-1a and/or HNF-1b have been shown to
affect expression of human OAT1 (Saji et al., 2008), OAT3
(Kikuchi et al., 2006) and URAT1 (Kikuchi et al., 2007), while
HNF-4a seems to be involved in human OAT2 expression
(Popowski et al., 2005). In addition, for both OAT3 (Kikuchi
et al., 2006) and URAT1 (Kikuchi et al., 2007), epigenetic
mechanisms of regulation have been identified. At the
protein level, PKC activation results in internalization and
thus functional inhibition of human OAT1 in frog oocytes,

Figure 3
Expression of OATs in different human epithelia. For more details,
see the text. OAT1 localization in the choroid plexus and OAT2
localization in the liver is inferred from rodent data. (A) apical; (B)
basolateral.

Figure 4
Cartoon of tertiary active transport mechanism for OAT-mediated
uptake of organic anions. The primary active Na+/K+-ATPase gener-
ates the sodium gradient that is used by the secondary active Na+-
dicarboxylate cotransporter (NaDC3) to maintain a high intracellular
concentration of a-ketoglutarate, which is used to drive uptake of
other organic anions by OAT1 and OAT3.
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HEK293 cells and Cos-7 cells (Wolff et al., 2003; Zhang et al.,
2008). Activation of PKA resulted in stimulation of PAH
uptake into opossum kidney cells, indicating that OAT1
could be stimulated by agents that activate PKA (Sauvant
et al., 2001; 2002); however, these effects seem to depend on
the agents used to stimulate the kinase (Sauvant et al., 2006).
Additional studies are needed to investigate what conse-
quences and effects drugs that inhibit or stimulate activation
of protein kinases have on human OATs (VanWert et al.,
2010).

Transporter structure
The size of OATs ranges from 542 amino acids for human
OAT3 to 563 amino acids for OAT1. Like OATPs, OATs are
predicted to have 12 transmembrane domains with intracel-
lular amino and carboxy-termini. There is a large extracellular
loop between transmembrane domains 1 and 2, as well as a
large intracellular loop between transmembrane domains
6 and 7. The large extracellular loop contains potential
N-glycosylation sites, while the large intracellular loop and
the carboxy-terminus contain putative phosphorylation sites.
The extra- and intracellular locations of the different loops
were experimentally supported for human OAT1 (Hong et al.,
2007).

As is the case for the OATPs, there is so far no crystal
structure available for any of the OATs. Therefore, homology
modelling has been used to predict the putative three-
dimensional structure of human OAT1 on the basis of the
bacterial glycerol-3-phosphate transporter and the lactose
permease (Perry et al., 2006). Several groups have used site-
directed mutagenesis coupled with functional experiments to
investigate the role of individual amino acids identified, for
example, from polymorphism studies (Bleasby et al., 2005;
Fujita et al., 2005; Erdman et al., 2006; Zhou et al., 2010).
Some of these amino acids are highlighted in the predicted
three-dimensional structure of OAT1 shown in Figure 2B. For
more details, please see Burckhardt and Burckhardt (2011).

More recently, a molecular dynamics simulation was per-
formed for OAT1 based on the homology model developed.
The data indicate that during the 100 ns simulation one pair
of transmembrane domains in each half of the transporter
tilt, suggesting a possible involvement in the opening and
closing of the transporter (Tsigelny et al., 2011). However,
such molecular simulation based on a homology model will
most likely improve once a crystal structure is available.

Pathology and clinical significance
Knockout mice for Oat1 (Eraly et al., 2006) and Oat3 (Sweet
et al., 2002) have been generated and are both viable and
fertile. Characterization of Oat1 null mice showed decreased
in vivo transport of Oat1 substrates such as PAH and furo-
semide, but not of estrone-3-sulphate, a substrate of Oat3
(Eraly et al., 2006). Renal slices from Oat3 null mice demon-
strated decreased transport of estrone-3-sulphate, taurocho-
late and PAH (Sweet et al., 2002). These animal models are
important tools to investigate whether Oat1 or Oat3 is pri-
marily responsible for the transport of common drug sub-
strates, but potential species differences must be considered
when extrapolating to the human situation (Nigam et al.,
2007).

For both OAT1 and OAT3, a lower than average mutation
rate has been described (Urban et al., 2006). Although several
non-synonymous polymorphisms exist for both transporters,
only a few have been shown to affect the transport function
(Srimaroeng et al., 2008). The only member of the OAT family
for which mutations have been linked to a disease is URAT1.
The first characterized mutation that was shown to result in
familial idiopathic hypouricaemia is a missense mutation
leading to a premature stop codon (W258X). It was first
reported by Enomoto et al. (2002a), and later additional
mutations have been described in patients with hypouricae-
mia (Anzai et al., 2007).

Because of the broad substrate specificity of OATs, drug–
drug interactions are possible especially with drugs that are
eliminated by OAT1 or OAT3 in the kidneys. The interaction
between probenecid and methotrexate that was first
described in 1978 (Aherne et al., 1978a,b) can today be
explained by probenecid’s inhibition of OAT3- and OAT1-
mediated methotrexate transport (Nozaki et al., 2007). Simi-
larly, co-administration of probenecid with furosemide and
other loop diuretics can decrease the potency of these diuret-
ics by reducing their OAT-mediated secretion in the proximal
tubule (Burckhardt and Burckhardt, 2011). However, such
drug–drug interactions are not always detrimental: for
instance, co-administration with probenecid is used to
decrease the OAT1- and OAT3-mediated renal elimination of
penicillin and other b-lactam antibiotics (Burckhardt and
Burckhardt, 2011).

OCTs

In addition to the OATs described above, the SLC22A family
also contains the organic cation transporters (OCT1, OCT2
and OCT3) and the organic cation and carnitine transporters
(OCT6, OCTN1 and OCTN2). Like the OATPs and OATs,
OCTs are multispecific uptake transporters expressed in
numerous epithelia throughout the body.

Tissue distribution
Protein expression of OCTs is summarized in Figure 5. OCT1
is usually considered to be a liver-specific transporter, along
with OATP1B1 and OATP1B3. However, weak expression of
OCT1 mRNA has been seen in other tissues, such as heart,
skeletal muscle, kidney, brain and placenta (Gorboulev et al.,
1997; Zhang et al., 1997). In the liver, OCT1 protein is local-
ized to the basolateral membrane of hepatocytes (Nies et al.,
2008). Furthermore, OCT1 protein was localized to the
luminal membrane of lung epithelial cells (Lips et al., 2005).
Although rodent Oct1 protein has been identified at the
basolateral membrane of enterocytes and proximal tubule
epithelial cells (Karbach et al., 2000), in situ hybridization did
not detect OCT1 expression in human kidney (Gorboulev
et al., 1997). OCT2 is generally considered to be a kidney
transporter, though mRNA is expressed at low levels in other
tissues such as spleen, placenta, small intestine and brain
(Gorboulev et al., 1997). OCT2 protein is mainly localized to
the luminal membrane of the distal convoluted tubules (Gor-
boulev et al., 1997). OCT2 has also been identified in the
pyramidal cells of the cerebral cortex and hippocampus
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(Busch et al., 1998) as well as the luminal membrane of lung
epithelia (Lips et al., 2005). OCT3, also known as the extra-
neuronal monoamine transporter (EMT), has the widest
tissue distribution of the OCTs, with strong mRNA expression
in liver, placenta, kidney and skeletal muscle, and weaker
signals in lung, heart and brain (Wu et al., 2000). OCT3
protein expression has been confirmed on the basolateral
membrane of hepatocytes (Nies et al., 2009), the basal mem-
branes of trophoblasts (Sata et al., 2005), the apical mem-
brane of enterocytes (Muller et al., 2005) and the luminal
membrane of lung epithelial cells (Lips et al., 2005).

OCTN1, which was first cloned from a human fetal liver
cDNA library, is expressed at the mRNA level in fetal liver,
kidney and lung (Tamai et al., 1997). In adults, mRNA is
strongly expressed in kidney, trachea and bone marrow, and
is weakly expressed in skeletal muscle, prostate, lung, pan-
creas, placenta, heart, uterus, spleen and spinal cord, as well
as several cancer cell lines (Tamai et al., 1997). OCTN2 mRNA
expression is highest in heart, placenta, skeletal muscle,
kidney and pancreas, though it is also expressed in brain,

lung and liver (Wu et al., 1998). Within the kidney, two
different transcript sizes (3.5 and 4.0 kb) were detected for
OCTN2 (Wu et al., 1998). OCTN2 protein expression has
been identified at the apical membrane of proximal tubules
in kidney (Masuda et al., 2006) and the apical membrane of
syncytiotrophoblasts in placenta (Grube et al., 2005). Both
OCTN1 and OCTN2 are also expressed in bronchial epithelial
cells, with the protein mainly localized to the apical mem-
brane (Horvath et al., 2007). OCT6 (CT2) was originally
cloned from a human testis cDNA library and has been local-
ized to Sertoli cells and epithelial cells of the epididymis
(Enomoto et al., 2002c). Expression of OCT6 mRNA is also
seen in liver, hematopoietic cells and some cancer cell lines
(Gong et al., 2002).

Substrate specificity
OCT1, OCT2 and OCT3 mediate the passive facilitated diffu-
sion of a broad range of organic cations down their electro-
chemical gradients. As such, transport may occur in either
direction, is independent of either sodium or pH, and trans-
port of charged substrates is always electrogenic. Although
OCT transporter action is independent of pH, affinity for
certain substrates does depend on their degree of ionization,
leading to increased transport of those substrates at reduced
pH (Barendt et al., 2002). Substrates include a wide variety of
structurally unrelated small organic cations, both endog-
enous and exogenous, including many drugs. An extensive
list of OCT1-3 substrates and inhibitors is included in a recent
review on the importance of organic cation transporters in
drug therapy (Nies et al., 2011). Among these substrates are
catecholamines, monoamine neurotransmitters and several
antiviral drugs.

MPP (1-methyl-4-phenylpyridinium) is a commonly used
model substrate for all three transporters; TEA (tetraethylam-
monium) is also commonly used for OCT1 and OCT2,
although it is not a good substrate for OCT3 (Grundemann
et al., 1998). A pharmacophore model developed for OCT1
suggests that substrates contain a positive ionizable site, a
hydrophobic site and two hydrogen bond acceptor sites
(Moaddel et al., 2007). A splice variant of OCT1 that lacks the
carboxy-terminus of the protein was found to be non-
functional for MPP transport (Hayer et al., 1999). Alterna-
tively, a somewhat longer splice variant of OCT2 that also
contains a premature stop codon is found in human kidney,
producing a protein which can still transport TEA, although
it is less functional for MPP or cimetidine and cannot trans-
port guanidine (Urakami et al., 2002).

OCTN1, OCTN2 and OCT6 are all cation and carnitine
transporters. OCTN1 transport activity can be affected by
both sodium and proton gradients, depending on the sub-
strate transported. OCTN2 also mediates both sodium-
dependent and sodium-independent uptake, depending on
the substrate (Koepsell et al., 2007). In addition to carnitine,
TEA is also a substrate of both transporters and is frequently
used as a model substrate. OCTN2 appears to have different
binding sites for TEA and L-carnitine, as several mutations
have been found to inhibit carnitine but not TEA transport
(Seth et al., 1999). OCT6 has a much more limited substrate
specificity than other organic cation transporters. Carnitine
transport was found to be bidirectional and not fully depen-

Figure 5
Expression of OCTs in human epithelial cells. For more details, see the
text. Localization of OCTN1 in the kidney is concluded based on
rodent data. (A) apical; (B) basolateral.
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dent on extracellular sodium, although transport was altered
by both sodium and pH (Enomoto et al., 2002c).

Regulation of expression
OCT regulation appears to vary depending on transporter,
species and tissue localization; therefore, it remains an area of
active research. Regulation of OCTs can occur at the tran-
scriptional or protein level. OCT1 has two response elements
for HNF-4a, which interacts with them and activates tran-
scription; this activation can be inhibited through SHP (Sab-
orowski et al., 2006). The OCT2 promoter region contains
putative androgen receptor elements and steroid hormones
increased both mRNA levels and activity of OCT2 in MDCK
cells (Shu et al., 2001). OCTN1 transcription was altered by
both the RUNX1 transcription factor and TNF-a in vitro
(Tokuhiro et al., 2003).

OCT proteins contain phosphorylation sites for PKA,
PKC, PKG and tyrosine kinase, and activation of these
kinases can alter the activity of OCT1 and OCT2. OCT3
doesn’t seem to be affected by PKA, PKC or PKG, despite
several conserved target sequences; however, its activity is
altered by both the MAP kinase pathway and the calcium–
calmodulin pathway. PDZ family members interact with
OCTN1 and OCTN2, and the interaction between PDZK1
and OCTN2 has been shown to stimulate transport (Kato
et al., 2005). The targeting of OCTN1 and OCTN2 to brush
border membrane of enterocytes has also been shown to be
regulated by PDZ domain proteins. Detailed summaries of
the current knowledge of OCT regulation can be found in
recent reviews by Ciarimboli and Schlatter (2005), Koepsell
et al. (2007) and Ciarimboli (2008).

Transporter structure
The organic cation transporting proteins contain between
543 and 557 amino acids. All are predicted to contain 12
transmembrane domains with intracellular amino and
carboxy-termini. A large extracellular loop between the first
and second transmembrane domains contains potential
N-glycosylation sites, and a large intracellular loop between
transmembrane domains 6 and 7 contains multiple putative
phosphorylation sites. OCT1 and OCT2 have 70% amino
acid identity to each other, and approximately 50% identity
with OCT3 (Gorboulev et al., 1997; Zhang et al., 1997;
Grundemann et al., 1998). OCTN1 and OCTN2, which share
77% identity with each other, and 31–37% identity with
OCT1-3, also contain an ATP/GTP binding motif in the
second intracellular loop (Tamai et al., 1997; Wu et al.,
1998). OCT6, also called CT2, has 36%, 38% and 37% iden-
tity to OAT1, OCT1 and OCTN2 respectively (Enomoto
et al., 2002c).

As has been done for the OATPs and OATs, homology
modelling has been used to predict the putative three-
dimensional structure of OCT1 (Popp et al., 2005). Accord-
ing to this model, substrates seem to interact with OCT1
within a region rather than at a single binding site (Koepsell,
2011). Additional experiments demonstrated that five amino
acids in the substrate binding region can interact with both
extracellular and intracellular substrates and are thus likely
part of the translocation pathway (Volk et al., 2009;

Koepsell, 2011). Furthermore, rat Oct1 has been expressed in
a cell-free system, purified and reconstituted into proteoli-
posomes for functional characterization (Keller et al., 2008).
Production of OCT1 in such a cell-free system could be the
first step towards the crystallization of this important drug
transporter.

Pathology and clinical significance
OCT1, OCT2 and OCT3 knockout mice have been gener-
ated and have no obvious phenotype (Jonker et al., 2001;
2003; Zwart et al., 2001). Similarly, no known polymor-
phisms in OCTs are associated with human pathologies.
OCT1 has 18 SNPs that alter amino acids – six have reduced
transport activity and one has increased activity (Kerb et al.,
2002). OCT2 has ten variants: with the exception of a pre-
mature stop codon, all are functionally active, though sub-
strate selectivity and the ability to transport may be slightly
altered (Koepsell et al., 2007). Five non-synonymous poly-
morphisms have been identified in OCT3, three of which
show reduced transport activity (Sakata et al., 2010). As with
the OATPs, it seems that the greatest risk of pathology asso-
ciated with the organic cation transporters is that of adverse
drug–drug interactions. OCT1 polymorphisms have been
associated with altered pharmacokinetics of the anti-
diabetic metformin and the tyrosine kinase inhibitor ima-
tinib, while a wide range of drugs have been implicated in
potential drug–drug interactions as reviewed by Fahrmayr
et al. (2010).

OCTN proteins, however, have been directly indicated in
pathologies. Mutations in the gene cluster that contains the
OCTN1 and OCTN2 genes have been associated with autoim-
mune diseases. OCTN1 variant L503F is associated with famil-
ial and sporadic inflammatory bowel disease (Lin et al., 2010).
Functionally, this variant has altered substrate specificity with
a significantly increased affinity for the common model sub-
strate TEA (Urban et al., 2007). Systemic carnitine deficiency,
which is caused by a lack of active reabsorption of carnitine in
the kidney, has been associated with multiple mutations that
cause low or impaired function of OCTN2 (Lahjouji et al.,
2001).

Conclusion

Proteins encoded by the SLCO and SLC22A superfamilies are
expressed in nearly every epithelium of the body, where they
play a significant role in the absorption, distribution and
elimination of drugs and other xenobiotics. Many members
of these superfamilies transport a broad range of structurally
diverse compounds, and several examples have been docu-
mented where transport proteins of the SLCO or SLC22A gene
families were involved in adverse or intended drug–drug as
well as drug–food interactions. Future studies should focus on
the elucidation of the three-dimensional structure of these
important drug uptake transporters because this will allow to
predict and prevent such drug-related pathologies as well as
to rationally design drugs targeted to individual tranpsorters.
Overall, such studies will lead to a better and safer drug
therapy.
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